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ABSTRACT 
 

Because of dynamic representation capabilities and a large spectrum of numbers can be represented with a limited 

number of bits, floating-point numbers are being widely adopted in the fields of scientific applications. A floating-

point arithmetic unit is specifically designed to carry out on floating-point numbers and is one of the most common 

parts of any computing system in the area of binary applications. Floating-point additions are the most frequent 

floating-point operations and floating-point adders are therefore critically important components in signal 

processing and embedded platforms. This review paper presents the survey of related works of different 

algorithms/techniques which are important for implementation of double precision floating point adder with reduced 

delay based on FPGAs. In this paper, an area and delay efficient floating-point adder are proposed by approximately 

designing an exponent subtractor and mantissa adder. Related operations such as normalization and rounding are 

also dealt with in terms of inexact computing. 
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I. INTRODUCTION 

 

Lot of research has been done to get the accurate 

answers from the past two decades in many numerical 

computations.This work is dedicated to getting a 

maximum of accuracy which is developed on FPGA.  

 

Of course, many numerical applications utilized double 

precision format. Several research works are already 

done in floating point operations. The highest precision 

is to be taken for better accuracy and precision, but even 

then in the double precision format also will show the 

error. So maintaining the accuracy is difficult in floating 

point arithmetic operations in previous adders. Many 

serial components like a left shifter or right shifter and 

the floating point addition (FPA) have been taken a 

longer latency. The Floating point (FP) adder required 

to have to be speedy in order to match with the 

increasing clock rate demand. In general, the 

conventional floating point adders perform the 

computation in a single clock cycle. For that cause clock 

rates would be lower and lower. Thus in order to 

perform sequential summations or sequential 

computations, the conventional adder is incompetent. So 

pipelining is the technique is necessary to overcome this 

limitation on the clock frequency. Pipelining means the 

instructions are executed sequentially, finally, the last 

output will come one by one. The speed of the operation 

will achieve by increasing the pipelines. The Pipelining 

techniques are applied in FPA in order to speed up the 

numerical arithmetic operation and to increase the 

through put. Now- a -days everybody tries to increase 

the clock speed this means that according to, Moore's 

Law feature size scaling is increasing exponentially in 

transistor per integrated chip. So the industry is now 

might reach that end point, the focus is now transfer to 

enhances with parallelism in computations more 

willingly than clock speed.  

 

Each IEEE-754 standard floating-point number system 

has a specific precision like single precision or double 

precision and quadruple precision which is comprised of 

the sign bit, exponent, and significant or fractional bits. 

But the bits will vary depending on the precision. In 

single precision one sign bit, 8-exponent bits, 23-

significant bits with implied one. In the case of double 
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precision, one sign bit, 11-exponent bits, 53- significant 

bits including one hidden bit by the standard. Exponent 

must be greater than zero and less than 1023.In this 

paper, we focus on the problem of summing two 

double-precision FP values, but when we rearrange the 

order of numbers sum would produce a miscellaneous 

result. This is an alternative to being deprived of 

parallelism in order to increase the clock speed.  

 

The sequential summation operation [1] will always 

give the similar result, but it may still be an erroneous 

one in case of shuffled order. In this case, 

parallelizations and accuracy may get failed. When we 

know the error we have a freedom to correct the answer. 

In this paper, we made an effort based on for FP 

addition using pipelining technique still guaranteeing an 

ideal result and of course acceptable rounded 

deterministic result. To speed up the computations for 

many scientific applications the design of the accurate 

floating point unit or FPA unit is thus of interest in this 

domain. In residue preserving addition most of the 

algorithms such as [2]– [4] rely on the similar basic 

building block that is studied in detail by Kornerup et al 

[5]. 

 

II.  BACKGROUND 
 

The FP format typically contains a sign bit, the 

exponent and the mantissa fields (commonly 

represented as a string from left to right). It offers a 

higher dynamic range than a fixed-point format to 

represent real numbers. However, the FP hardware is 

both more complex and consumes significant power. 

The most commonly used standard for the FP format is 

the IEEE 754-2008 [6]. There are basic and extended 

types that are supported by this standard: half precision 

(16 bits), single precision (32 bits), double precision (64 

bits), extended precision (80 bits) and quad precision 

(128 bits). A general IEEE FP format is shown in Fig. 1. 

The exponent part has a bias of 2E-1-1, where E is the 

number of exponent bits. The single precision and 

double precision formats are mostly used in today’s 

computers. 

 
Figure 1. General IEEE 754 FP format 

 

 

III. Existing Floating-Point Adder 

Architecture 

 
Figure 2. The accurate FP adder architecture 

 

A generic FP adder architecture includes hardware 

blocks for exponent comparison, mantissa alignment, 

mantissa addition, normalization and rounding of the 

mantissa (shown in Fig. 2 and detailed in [7]). Two 

operands are first unpacked from the FP format, and 

each mantissa is added to the hidden '1' bit. The addition 

of FP numbers involves comparing the two exponents 

and adding the two mantissas; the exponents are first 

evaluated to find the larger number. The mantissas are 

then swapped according to the exponent comparison; 

they are then aligned to have an equal exponent prior to 

the addition in the mantissa adder. Following the 

addition, normalization shifts are required to restore the 

result to the IEEE standard format. The normalization is 

completed by left shifting with a number of leading 

zeros; therefore, leading zero detection is a key step for 

normalization. Rounding the normalized result is the 

last step before storing back the result; special cases 

(such as overflow, underflow, and not a number) are 

also detected and represented by flags. 

 

IV. Design of Inexact Floating-Point Adders 

 

The inexact design of an FP adder originates at an 

architectural level (Fig. 2). It consists of designing both 

the mantissa adder and exponent subtractor by using 

approximate fixed-point adders. At the same time, the 

related logic including the normalizer and the rounder 

should also be considered according to the inexact 

mantissa and exponent parts. The circuit level inexact 

designs are discussed in detail in the following 
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subsections. 3.1 Exponent Subtractor The exponent 

subtractor is used for exponent comparison and can be 

implemented as an adder. An inexact fixed-point adder 

has been extensively studied and can be used in the 

exponent adder; inexact adders such as lower-part-OR 

adders (LOA) [8], approximate mirror adders [9], 

approximate XOR/XNOR-based adders [10], and equal 

segmentation adders [11] [12] can be found in the 

literature. For a fast FP adder, a revised LOA adder is 

used, because it significantly reduces the critical path by 

ignoring the lower carry bits. 

 

A k-bit LOA consists of two parts, i.e., an m-bit exact 

adder and an n-bit inexact adder (Fig. 3). The m-bit 

adder is used for the m most significant bits of the sum, 

while the n-bit adder consists of OR gates to compute 

the addition of the least significant n bits (i.e., the lower 

n-bit adder is an array of n 2-input OR gates).  

 
Figure 3. The revised LOA adder structure 

 

In the original LOA design, an additional AND gate are 

used for generating the most significant carry bit of the 

n-bit adder; in this work, all carry bits in then-bit 

inexact adder are ignored to further reduce the critical 

path. 

 

The exponent is dominant in the FP format because it 

determines the dynamic range. The approximate design 

of the exponent subtractor must be carefully considered 

due to its importance in the number format. The results 

of the addition are significantly affected by applying an 

approximate design to only a few of the least significant 

bits of the exponent subtractor under a small data range. 

 

 

 

 

4.1 Mantissa Adder  

 

The revised LOA adder can also be used in the mantissa 

adder for an inexact design. Compared to an exponent 

subtractor, the mantissa adder offers a larger design 

space for inexact design, because the number of bits in 

the mantissa adder is significantly larger than the 

exponent subtractor. As shown in Table I, the number of 

mantissa bits is larger than the number of exponent bits. 

For the IEEE single precision format, the exponent 

subtractor is an 8-bit adder, while the mantissa adder is 

a 25-bit adder (for two 24-bit significances).  

 

Table 1 No. of Exponent and Mantissa Bits for the 

IEEE 754 Basic and Extended FP Types. 

 

 
 

Furthermore, the inexact design in the mantissa adder 

has a lower impact on the error than its exponent 

counterpart in the lower data range, because the 

mantissa part is less significant than the exponent part. 

 

4.2 Normalizer  

 

Normalization is required to ensure that the addition 

results fall in the correct range; the sum or difference 

may be too small and a multi-bit left shift process may 

be required. A reduction of the exponent is also 

necessary. The normalization is performed by leading 

zeros counter that determines the required number of 

left shifts. As the mantissa adder is already not exact for 

the n least significant bits, the detection of the leading 

zeros can also be simplified in the inexact design, i.e., 

approximate leading zero counting logic can be used. 

 

4.3 Rounder  

 

A rounding mode is required to accommodate the 

inexact number that an FP format can represent. A 

proper rounding maintains three extra bits (i.e., guard 

bit, round bit and a sticky bit). The adder may require a 

further normalization and exponent adjustment after the 

rounding step, therefore the hardware for rounding is 

significant. 
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However, it does not affect the results of the inexact 

addition as the lower significant n bits are already 

inexact. Therefore, rounding can be ignored in the 

inexact design of an FP adder. 

 

4.4 Overall Inexact FP Adder Architecture  

 

Based on the previous discussion, an inexact FP adder 

can be designed by using approximate adders in the 

exponent subtractor and mantissa adders, an 

approximate leading zero counter in the normalizer and 

by ignoring the rounder. The inexact FP adder 

architecture is shown in Fig. 4. 

 

 
Figure 4. The Inexact FP adder architecture 

 

V. RESULTS AND DISCUSSION 

 

5.1 RTL Schematic Diagram 

 

 
Figure 5 RTL Schematic of Inexact Double Precision 

Floating Point Adder 

 

5.2 Comparison Table 

 

Table II Comparison of Delay and area for 

Conventional and Proposed Double Precision Floating 

Point Adder units 

 

Architecture LUT’s Delay(ns) 

Existing              59 16.537 

Proposed 42 11.302 

 

VI. CONCLUSION 

 
This work presents the implementation of double 

precision inexact floating point adder. The whole design 

was captured in Verilog HDL, tested in simulation using 

Model Tech’s Modelsim, placed and routed on a 

Spartan 3E FPGA from Xilinx 13.2. Two extreme cases 

for the inexact design of FP adders have been studied. 

The first design uses an all-bit inexact mantissa adder; 

the second design uses an inexact LSB in the exponent 

subtraction. The second design takes a small area and 

less delay and offers higher performance than the first 

design. As such this is suitable for high dynamic image 

applications. It has been shown that the exponent part is 

a dominant part of the FP number format; however, it 

has a smaller design space for an inexact design 

compared to the mantissa adder. 
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