
IJSRSET1734140 | Received : 15 August 2017 | Accepted : 29 August - 2017 | July-August-2017 [(3)5: 551-555]

© 2017 IJSRSET | Volume 3 | Issue 5 | Print ISSN: 2395-1990 | Online ISSN : 2394-4099
Themed Section: Engineering and Technology

551

An Efficient Architecture for Double Precision Floating Point

Adder with LOA
S. Rajasekhar Reddy, M. Kalapana Chowdary, P. Kanvitha

1,3 M.Tech Scholar, ECE Department, CIET, Guntur, Andhra Pradesh, India
2Assistant. Professor, ECE Department, CIET, Guntur, Andhra Pradesh, India

ABSTRACT

Because of dynamic representation capabilities and a large spectrum of numbers can be represented with a limited

number of bits, floating-point numbers are being widely adopted in the fields of scientific applications. A floating-

point arithmetic unit is specifically designed to carry out on floating-point numbers and is one of the most common

parts of any computing system in the area of binary applications. Floating-point additions are the most frequent

floating-point operations and floating-point adders are therefore critically important components in signal

processing and embedded platforms. This review paper presents the survey of related works of different

algorithms/techniques which are important for implementation of double precision floating point adder with reduced

delay based on FPGAs. In this paper, an area and delay efficient floating-point adder are proposed by approximately

designing an exponent subtractor and mantissa adder. Related operations such as normalization and rounding are

also dealt with in terms of inexact computing.

Keywords: Double Precision, Floating-Point Adders, Area Efficient.

I. INTRODUCTION

Lot of research has been done to get the accurate

answers from the past two decades in many numerical

computations.This work is dedicated to getting a

maximum of accuracy which is developed on FPGA.

Of course, many numerical applications utilized double

precision format. Several research works are already

done in floating point operations. The highest precision

is to be taken for better accuracy and precision, but even

then in the double precision format also will show the

error. So maintaining the accuracy is difficult in floating

point arithmetic operations in previous adders. Many

serial components like a left shifter or right shifter and

the floating point addition (FPA) have been taken a

longer latency. The Floating point (FP) adder required

to have to be speedy in order to match with the

increasing clock rate demand. In general, the

conventional floating point adders perform the

computation in a single clock cycle. For that cause clock

rates would be lower and lower. Thus in order to

perform sequential summations or sequential

computations, the conventional adder is incompetent. So

pipelining is the technique is necessary to overcome this

limitation on the clock frequency. Pipelining means the

instructions are executed sequentially, finally, the last

output will come one by one. The speed of the operation

will achieve by increasing the pipelines. The Pipelining

techniques are applied in FPA in order to speed up the

numerical arithmetic operation and to increase the

through put. Now- a -days everybody tries to increase

the clock speed this means that according to, Moore's

Law feature size scaling is increasing exponentially in

transistor per integrated chip. So the industry is now

might reach that end point, the focus is now transfer to

enhances with parallelism in computations more

willingly than clock speed.

Each IEEE-754 standard floating-point number system

has a specific precision like single precision or double

precision and quadruple precision which is comprised of

the sign bit, exponent, and significant or fractional bits.

But the bits will vary depending on the precision. In

single precision one sign bit, 8-exponent bits, 23-

significant bits with implied one. In the case of double

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com) 552

precision, one sign bit, 11-exponent bits, 53- significant

bits including one hidden bit by the standard. Exponent

must be greater than zero and less than 1023.In this

paper, we focus on the problem of summing two

double-precision FP values, but when we rearrange the

order of numbers sum would produce a miscellaneous

result. This is an alternative to being deprived of

parallelism in order to increase the clock speed.

The sequential summation operation [1] will always

give the similar result, but it may still be an erroneous

one in case of shuffled order. In this case,

parallelizations and accuracy may get failed. When we

know the error we have a freedom to correct the answer.

In this paper, we made an effort based on for FP

addition using pipelining technique still guaranteeing an

ideal result and of course acceptable rounded

deterministic result. To speed up the computations for

many scientific applications the design of the accurate

floating point unit or FPA unit is thus of interest in this

domain. In residue preserving addition most of the

algorithms such as [2]– [4] rely on the similar basic

building block that is studied in detail by Kornerup et al

[5].

II. BACKGROUND

The FP format typically contains a sign bit, the

exponent and the mantissa fields (commonly

represented as a string from left to right). It offers a

higher dynamic range than a fixed-point format to

represent real numbers. However, the FP hardware is

both more complex and consumes significant power.

The most commonly used standard for the FP format is

the IEEE 754-2008 [6]. There are basic and extended

types that are supported by this standard: half precision

(16 bits), single precision (32 bits), double precision (64

bits), extended precision (80 bits) and quad precision

(128 bits). A general IEEE FP format is shown in Fig. 1.

The exponent part has a bias of 2E-1-1, where E is the

number of exponent bits. The single precision and

double precision formats are mostly used in today’s

computers.

Figure 1. General IEEE 754 FP format

III. Existing Floating-Point Adder

Architecture

Figure 2. The accurate FP adder architecture

A generic FP adder architecture includes hardware

blocks for exponent comparison, mantissa alignment,

mantissa addition, normalization and rounding of the

mantissa (shown in Fig. 2 and detailed in [7]). Two

operands are first unpacked from the FP format, and

each mantissa is added to the hidden '1' bit. The addition

of FP numbers involves comparing the two exponents

and adding the two mantissas; the exponents are first

evaluated to find the larger number. The mantissas are

then swapped according to the exponent comparison;

they are then aligned to have an equal exponent prior to

the addition in the mantissa adder. Following the

addition, normalization shifts are required to restore the

result to the IEEE standard format. The normalization is

completed by left shifting with a number of leading

zeros; therefore, leading zero detection is a key step for

normalization. Rounding the normalized result is the

last step before storing back the result; special cases

(such as overflow, underflow, and not a number) are

also detected and represented by flags.

IV. Design of Inexact Floating-Point Adders

The inexact design of an FP adder originates at an

architectural level (Fig. 2). It consists of designing both

the mantissa adder and exponent subtractor by using

approximate fixed-point adders. At the same time, the

related logic including the normalizer and the rounder

should also be considered according to the inexact

mantissa and exponent parts. The circuit level inexact

designs are discussed in detail in the following

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com) 553

subsections. 3.1 Exponent Subtractor The exponent

subtractor is used for exponent comparison and can be

implemented as an adder. An inexact fixed-point adder

has been extensively studied and can be used in the

exponent adder; inexact adders such as lower-part-OR

adders (LOA) [8], approximate mirror adders [9],

approximate XOR/XNOR-based adders [10], and equal

segmentation adders [11] [12] can be found in the

literature. For a fast FP adder, a revised LOA adder is

used, because it significantly reduces the critical path by

ignoring the lower carry bits.

A k-bit LOA consists of two parts, i.e., an m-bit exact

adder and an n-bit inexact adder (Fig. 3). The m-bit

adder is used for the m most significant bits of the sum,

while the n-bit adder consists of OR gates to compute

the addition of the least significant n bits (i.e., the lower

n-bit adder is an array of n 2-input OR gates).

Figure 3. The revised LOA adder structure

In the original LOA design, an additional AND gate are

used for generating the most significant carry bit of the

n-bit adder; in this work, all carry bits in then-bit

inexact adder are ignored to further reduce the critical

path.

The exponent is dominant in the FP format because it

determines the dynamic range. The approximate design

of the exponent subtractor must be carefully considered

due to its importance in the number format. The results

of the addition are significantly affected by applying an

approximate design to only a few of the least significant

bits of the exponent subtractor under a small data range.

4.1 Mantissa Adder

The revised LOA adder can also be used in the mantissa

adder for an inexact design. Compared to an exponent

subtractor, the mantissa adder offers a larger design

space for inexact design, because the number of bits in

the mantissa adder is significantly larger than the

exponent subtractor. As shown in Table I, the number of

mantissa bits is larger than the number of exponent bits.

For the IEEE single precision format, the exponent

subtractor is an 8-bit adder, while the mantissa adder is

a 25-bit adder (for two 24-bit significances).

Table 1 No. of Exponent and Mantissa Bits for the

IEEE 754 Basic and Extended FP Types.

Furthermore, the inexact design in the mantissa adder

has a lower impact on the error than its exponent

counterpart in the lower data range, because the

mantissa part is less significant than the exponent part.

4.2 Normalizer

Normalization is required to ensure that the addition

results fall in the correct range; the sum or difference

may be too small and a multi-bit left shift process may

be required. A reduction of the exponent is also

necessary. The normalization is performed by leading

zeros counter that determines the required number of

left shifts. As the mantissa adder is already not exact for

the n least significant bits, the detection of the leading

zeros can also be simplified in the inexact design, i.e.,

approximate leading zero counting logic can be used.

4.3 Rounder

A rounding mode is required to accommodate the

inexact number that an FP format can represent. A

proper rounding maintains three extra bits (i.e., guard

bit, round bit and a sticky bit). The adder may require a

further normalization and exponent adjustment after the

rounding step, therefore the hardware for rounding is

significant.

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com) 554

However, it does not affect the results of the inexact

addition as the lower significant n bits are already

inexact. Therefore, rounding can be ignored in the

inexact design of an FP adder.

4.4 Overall Inexact FP Adder Architecture

Based on the previous discussion, an inexact FP adder

can be designed by using approximate adders in the

exponent subtractor and mantissa adders, an

approximate leading zero counter in the normalizer and

by ignoring the rounder. The inexact FP adder

architecture is shown in Fig. 4.

Figure 4. The Inexact FP adder architecture

V. RESULTS AND DISCUSSION

5.1 RTL Schematic Diagram

Figure 5 RTL Schematic of Inexact Double Precision

Floating Point Adder

5.2 Comparison Table

Table II Comparison of Delay and area for

Conventional and Proposed Double Precision Floating

Point Adder units

Architecture LUT’s Delay(ns)

Existing 59 16.537

Proposed 42 11.302

VI. CONCLUSION

This work presents the implementation of double

precision inexact floating point adder. The whole design

was captured in Verilog HDL, tested in simulation using

Model Tech’s Modelsim, placed and routed on a

Spartan 3E FPGA from Xilinx 13.2. Two extreme cases

for the inexact design of FP adders have been studied.

The first design uses an all-bit inexact mantissa adder;

the second design uses an inexact LSB in the exponent

subtraction. The second design takes a small area and

less delay and offers higher performance than the first

design. As such this is suitable for high dynamic image

applications. It has been shown that the exponent part is

a dominant part of the FP number format; however, it

has a smaller design space for an inexact design

compared to the mantissa adder.

VII. REFERENCES

[1]. M. V. Manoukian and G. A. Constantinides,

"Accurate Floating point arithmetic through

hardware error-free transformations," in Proc.

Intl. Conf. on Reconf. Comp. Springer-Verlag,

2011, pp. 94–101.

[2]. I. J. Anderson, "A distillation algorithm for

floating point summation," SIAM J. Sci. Comput,

vol. 20, pp. 1797–1806, 1999.

[3]. Y. K. Zhu and W. B. Hayes, "Correct rounding

and a hybrid approach to exact floating-point

summation," SIAM J. Sci.Comput., vol. 31, no. 4,

pp. 2981–3001, July 2009.

[4]. S. M. Rump, "Ultimately fast accurate

summation," SIAM J.Sci. Comput., vol. 31, no. 5,

pp. 3466–3502, September 2009.

[5]. P. Kornerup, V. Lefevre, N. Louvet, and J.-M.

Muller, "On the computation of correctly rounded

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com) 555

sums," IEEE Trans. Comput., vol. 61, no. 3, pp.

289 – 298, March 2012.

[6]. IEEE Standard for Floating-Point

Arithmetic,"IEEE Std 7542008, Aug. 29

2008,doi:10.1109/IEEESTD.2008.4610935.

[7]. B. Parhami, Computer arithmetic: algorithms and

hardware designs. Oxford University Press, Inc.,

2009.

[8]. H. Mahdiani, A. Ahmadi, S. Fakhraie, and C.

Lucas, ‚Bioinspired imprecise computational

blocks for efficient VLSI implementation of soft-

computing applications,‛ IEEE Trans. Circuits

Syst. I, Reg. Papers, vol. 57, pp. 850-862, 2010.

[9]. V. Gupta, D. Mohapatra, S. Park, A.

Raghunathan, and K. Roy, ‚IMPACT: IMPrecise

Adders for Low-Power Approximate Computing,‛

Proc. Int. Symp. Low Power Electronics and

Design (ISLPED), pp. 1-3, 2011.

[10]. Z. Yang, A. Jain, J. Liang, J. Han and F.

Lombardi, ‚Approximate XOR XNOR-based

Adders for Inexact Computing‛, Proc. 13rd IEEE

Conf. Nanotechnol. (IEEE-NANO), pp. 690-693,

2013.

[11]. D. Mohapatra, V. Chippa, A. Raghunathan, and

K. Roy, ‚Design of voltage-scalable meta-

functions for approximate computing‛, Proc.

Design, Automation & Test in Europe Conference

& Exhibition (DATE), pp. 1-6, 2011

